The Relative Migration Tendencies of *p*-Substituted Phenyl Groups in Carbonium Ion Doubly-degenerate Rearrangements

By V. G. SHUBIN,* D. V. KORCHAGINA, G. I. BORODKIN, B. G. DERENDJAEV, and V. A. KOPTYUG (Institute of Organic Chemistry, Siberian Division of the Academy of Sciences, Novosibirsk, 90, U.S.S.R.)

Summary The order of the migration tendencies of p-Xphenyl groups in the doubly-degenerate rearrangement of $stable \ 9\ -p\ -X\ -phenyl-9, 10\ -dimethyl phenanthrenonium\ ions$ (Ia—e) is $X = Me > F \sim H > Cl > CF_3$.

WE present some preliminary studies of the 9-p-X-phenyl-9,10-dimethylphenanthrenonium ions (Ia-e) formed by protonation of the neutral precursors (IIa-e)† in strongly acid media.

The n.m.r. and absorption spectra of the ions (Ia-e) are listed in Tables 1 and 2, respectively. Some difference between the methyl chemical shifts of the ions (Ia--e) and those of 9,9,10-trimethylphenanthrenonium ion (τ 6.46 for 10-CH₃ and 8.15 for 9-CH₃¹) is not unexpected and results from the influence of neighbouring p-X-phenyl groups.[‡]

[†] Satisfactory analytical and spectral data were obtained for all new compounds. $\ddagger \pi$ -Aryl bridging, to some extent, may be operative (cf. ref. 2).

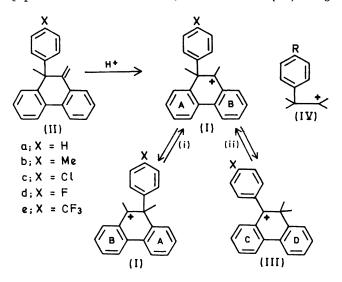
As the temperature is raised the signals of 9- and 10methyl groups broaden, coalesce, and turn into a sharp singlet for all the ions. These changes are reversible and are apparently due to rapid 1,2-aryl shifts [Pathway (i)]. The observed significant changes of phenanthrene ring

very short, cf. ref. 3]. An alternative four-step mechanism involving ring-contraction followed by methyl equilibration via 9-p-X-cumyl-9-fluorenyl cation appears not to be operative because of instability of the intermediary ions (cf. ref. 4).

TABLE 1

N.m.r. data for the 9-1	o-X-phen	vyl-9,10-dimetl	hylphen an threnc	nium ions	in FSO.	H–SO,CIF ()	1:5) ^a

	¹ H Ch	emical shifts (-	Collapsed line	¹⁹ F Chemical	
х	9-CH ₃	10-CH ₃	<i>p</i> -CH ₃	of 9- and 10-CH ₃	shifts (-100°)°
н	7.87	6.87		7·38 (70) d	
Me	7·93°	6·90ª	7·65 (7·82) ¹	7.41 (100)	
Cl	7.89	6.87		7·34 (— 55)	
F	7.89	6.86		7·33 (— 70)	$+110.0 (+116.8)^{f}$
CF ₃	7.85	6.87		7·33 (0)	$+61.3 (+62.8)^{f}$


^a All the ¹H n.m.r. spectra show the deshielded complex multiplets of phenanthrene ring protons (τca , 1–2.5) and the patterns of p-X-phenyl groups (to be considered in detail elsewhere). ^b Referred to internal CH_2Cl_2 taken as $\tau 4.67$.

^c In p.p.m. (internal CCl₃F). ^d Coalescence temperature, [°]C (100 Mc/sec.).

e At -115°.

^t Numbers in parentheses are the chemical shifts for neutral precursors in CCl₄ at $+20^{\circ}$.

pattern are similar to those of 9,9,10-trimethylphenanthrenonium ion and are consistent with the mechanism via a 1,2-aryl shift [Pathway (i); equilibrium $A \not\subset B$] but inconsistent with that via a 1,2-methyl shift [Pathway (ii)]. Taking into account the lack of signals due to isomeric 9,9-dimethyl-10-(p-X-phenyl)-phenanthrenonium ions (IIIa-e) in the n.m.r. spectra it may be concluded that the coalescence of methyl signals owing to reversible 1,2-methyl shift (Pathway ii) should not be accompanied by noticeable changes of the phenanthrene ring pattern [equilibria $A \not\subset C$ and $B \not\subset D$, the lifetime of (III) being

The observed order of the migration tendencies⁵ of p-X-phenyl groups, Me > F \sim H > Cl > CF₃, is in accord with the suggested mechanism [Pathway (i)], the essential feature of which is electrophilic attack of the carbonium centre on the p-substituted aromatic ring.

TABLE 2

Absorption spectra of 9-p-X-phenyl-9,10-dimethylphenanthrenonium ions in 70%-HClO₄ at 25°

х	λ_{max} , nm and log ϵ (in parentheses)					
Hª	269(4·50) 335(3·99) 373sh	558(3.79)				
Me	269(4·41) 336(3·95) 397(3·50)	558(3·70)				
Cl	270(4·46) 335(3·97) 382sh	556(3.75)				
F	269(4·50) 336(4·00) 376sh	556(3·81)				
CF_8	269(4.49) 339(4.00)	556(3.84)				
9,9,10-Trimethyl-		· · ·				
phenanthrenonium						
ion ^b	266(4.28) 338(3.92)	530(3 .59)				
• 969/4 94) 999/9 06) 540/9 59) :- IICIO 8. h :- 550/ II CO 1						

^a 268(4·34), 333(3·96), 549(3·78) in HClO₄^a; ^b in 75% H₂SO₄¹

In the related 1,1,2-trimethyl-2-phenyl propyl cations (IV), the rate of migration even for $R = CF_3$ is probably too high to be measured by n.m.r. spectroscopy (sharp singlet of methyl protons at -78°).⁶§ The more effective delocalization of positive charge in 9-(p-X-phenyl)-9,10dimethylphenanthrenonium ions results in retardation of the rearrangement and it is thus possible to establish the structure-reactivity correlations.

(Received, March 25th, 1970; Com. 425.)

§ Such ions with R = H, Me, OMe undergo rapid transformation into more stable isomeric species.⁶

- ¹ V. G. Shubin, D. V. Korchagina, A. I. Rezvukhin, and V. A. Koptyug, Doklady Akad. Nauk S.S.S.R., 1968, 179, 119.
- ² H. C. Brown and C. J. Kim, J. Amer. Chem. Soc., 1968, 90, 2082.
 ³ R. L. Shriner and L. Geipel, J. Amer. Chem. Soc., 1957, 79, 227.
- ⁴ V. G. Shubin, D. V. Korchagina, and V. A. Koptyug, Izvest. Akad. Nauk S.S.S.R., Ser. khim., 1969, 1201.
- ⁶ M. Stiles and R. P. Mayer, *J. Amer. Chem. Soc.*, 1959, 81, 1497. ⁶ G. A. Olah, M. B. Comisarow, and C. J. Kim, *J. Amer. Chem. Soc.*, 1969, 91, 1458.